

A comparison of statistical modeling techniques to predict arsenic in domestic wells in the CONUS

Melissa Lombard, Bernard T. Nolan, Mathew Gribble, Maria Argos, Joseph Ayotte

pubs.acs.org/est

Estimating the High-Arsenic Domestic-Well Population in the Conterminous United States

Joseph D. Ayotte,**,[†]
[□] Laura Medalie,[‡] Sharon L. Qi,[§] Lorraine C. Backer, and Bernard T. Nolan L. Qi, and Bernard T. Qi, and Bernar

- Logistic Regression model
- Model response term is the probability of arsenic > 10µg/L

$$P(y|x) = \frac{e^{\beta_0 + \beta_1 x_1 + \dots + \beta_n x_n}}{1 + e^{\beta_0 + \beta_1 x_1 + \dots + \beta_n x_n}}$$

Existing logistic regression model

Arsenic concentrations from 20,450 domestic wells

Black = As < 1 μ g/L Light blue = 1 \geq As < 10 μ g/L Dark blue = As > 10 μ g/L

42 predictor variables

Generalized geology of the U.S.

From Ayotte et al. 2017, ES&T

After King and Beikman, 1974

Existing arsenic model and exposure estimate

USGS Powell Center study

Linking environmental and public health data to evaluate health effects of arsenic exposure from domestic supply wells

- Make a new national arsenic model
 - Use machine learning methods
 - Update model variables
- Results will be used in epidemiology models to evaluate relationships between human health outcomes and arsenic in domestic wells.

Arsenic's effects on the human body

https://www.hrw.org/report/2016/04/06/nepotism-and-neglect/failing-response-arsenic-drinking-water-bangladeshs-rural#page

Boosted Regression Tree Model

BRT Model Number of trees = 4500 Interaction depth = 14 Learning rate = 0.01

From Elith et al., 2008

LR and BRT Model Comparison

Model Comparison Predictive Performance

	Training Da	ata		Hold-out Data		
	Accuracy	Sensitivity	Specificity	Accuracy	Sensitivity	Specificity
LR	89.9%	12.7%	99.3%	90.1%	13.9%	99.0%
BRT	95.6%	64.5%	99.3%	92.1%	43.7%	97.8%

Sensitivity = events (As> $10\mu g/I$) Specificity = non-events (As< $10\mu g/I$)

Random Forest Classification Model

- Ensemble tree based machine learning method
- Model response term is a classification (category)

• Arsenic ≤ 10 μg/L

• Arsenic > 10 μg/L

Play 9
Don't Play 5

OUTLOOK?

Play 2
Don't Play 3
Don't Play 0
HUMIDITY?

Play 2
Don't Play 0

RFC Model Number of trees = 500 mtry = 38

LR, BRT, & RFC Model Comparison

Model Comparison Predictive Performance

	Training Data			Hold-out Data		
	Accuracy	Sensitivity	Specificity	Accuracy	Sensitivity	Specificity
LR	89.9%	12.7%	99.3%	90.1%	13.9%	99.0%
BRT	95.6%	64.5%	99.3%	92.1%	43.7%	97.8%
RFC 2C	99.9%	100%	99.3%	91.0%	38.4%	97.1%

Sensitivity = events (As>10 μ g/L) Classification As>10 μ g/L

Specificity = non-events (As<10 μ g/L) Classification As<10 μ g/L

Next steps

- Developing a RFC model with 4 concentration categories
 - $\leq 5 \,\mu\text{g/L}$
 - $5 10 \mu g/L$
 - $10 50 \mu g/L$
 - > 50 μ g/L
- Arsenic model results will be used in epidemiology models
 - Low birth weight
 - Cancers
 - Diabetes
 - Cardiovascular disease

CONTACT INFO:

Melissa Lombard, Ph.D. US Geological Survey 331 Commerce Way Pembroke, NH 03275 mlombard@usgs.gov 603-226-7816

Questions ?

